Create Linked List in C Using Function
July 14, 2020
Hey students, if you are learning for C language and trying to Create Linked List in C Using Function But you do not know in detail about it. Don't Worry, In this post I teach you about Linked List Creation In C.
First of all try to understand 'what is Linked List in C'.
Now check out the Output of the given program:
In case you can face any error while compiling the code, you will check the corrections of codes. Despite that, if you see any error, then comment.
First of all try to understand 'what is Linked List in C'.
What is Linked List?
In C language, Linked List is a linear sequence of data structure which is connected through the Links. Linked List is the dynamic sequence of links that contains items. All the links have connections to each other.
How to Create Linked List in C?
Simply Create Linked List in C using Function:
Implement the following program in C: -
#include#include #include #include struct node { int data; int key; struct node *next; }; struct node *head = NULL; struct node *current = NULL; //display the list void printList() { struct node *ptr = head; printf("\n[ "); //start from the beginning while(ptr != NULL) { printf("(%d,%d) ",ptr->key,ptr->data); ptr = ptr->next; } printf(" ]"); } //insert link at the first location void insertFirst(int key, int data) { //create a link struct node *link = (struct node*) malloc(sizeof(struct node)); link->key = key; link->data = data; //point it to old first node link->next = head; //point first to new first node head = link; } //delete first item struct node* deleteFirst() { //save reference to first link struct node *tempLink = head; //mark next to first link as first head = head->next; //return the deleted link return tempLink; } //is list empty bool isEmpty() { return head == NULL; } int length() { int length = 0; struct node *current; for(current = head; current != NULL; current = current->next) { length++; } return length; } //find a link with given key struct node* find(int key) { //start from the first link struct node* current = head; //if list is empty if(head == NULL) { return NULL; } //navigate through list while(current->key != key) { //if it is last node if(current->next == NULL) { return NULL; } else { //go to next link current = current->next; } } //if data found, return the current Link return current; } //delete a link with given key struct node* delete(int key) { //start from the first link struct node* current = head; struct node* previous = NULL; //if list is empty if(head == NULL) { return NULL; } //navigate through list while(current->key != key) { //if it is last node if(current->next == NULL) { return NULL; } else { //store reference to current link previous = current; //move to next link current = current->next; } } //found a match, update the link if(current == head) { //change first to point to next link head = head->next; } else { //bypass the current link previous->next = current->next; } return current; } void sort() { int i, j, k, tempKey, tempData; struct node *current; struct node *next; int size = length(); k = size ; for ( i = 0 ; i < size - 1 ; i++, k-- ) { current = head; next = head->next; for ( j = 1 ; j < k ; j++ ) { if ( current->data > next->data ) { tempData = current->data; current->data = next->data; next->data = tempData; tempKey = current->key; current->key = next->key; next->key = tempKey; } current = current->next; next = next->next; } } } void reverse(struct node** head_ref) { struct node* prev = NULL; struct node* current = *head_ref; struct node* next; while (current != NULL) { next = current->next; current->next = prev; prev = current; current = next; } *head_ref = prev; } void main() { insertFirst(1,10); insertFirst(2,20); insertFirst(3,30); insertFirst(4,1); insertFirst(5,40); insertFirst(6,56); printf("Original List: "); //print list printList(); while(!isEmpty()) { struct node *temp = deleteFirst(); printf("\nDeleted value:"); printf("(%d,%d) ",temp->key,temp->data); } printf("\nList after deleting all items: "); printList(); insertFirst(1,10); insertFirst(2,20); insertFirst(3,30); insertFirst(4,1); insertFirst(5,40); insertFirst(6,56); printf("\nRestored List: "); printList(); printf("\n"); struct node *foundLink = find(4); if(foundLink != NULL) { printf("Element found: "); printf("(%d,%d) ",foundLink->key,foundLink->data); printf("\n"); } else { printf("Element not found."); } delete(4); printf("List after deleting an item: "); printList(); printf("\n"); foundLink = find(4); if(foundLink != NULL) { printf("Element found: "); printf("(%d,%d) ",foundLink->key,foundLink->data); printf("\n"); } else { printf("Element not found."); } printf("\n"); sort(); printf("List after sorting the data: "); printList(); reverse(&head); printf("\nList after reversing the data: "); printList(); }
Now check out the Output of the given program:
Original List: [ (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) ] Deleted value:(6,56) Deleted value:(5,40) Deleted value:(4,1) Deleted value:(3,30) Deleted value:(2,20) Deleted value:(1,10) List after deleting all items: [ ] Restored List: [ (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) ] Element found: (4,1) List after deleting an item: [ (6,56) (5,40) (3,30) (2,20) (1,10) ] Element not found. List after sorting the data: [ (1,10) (2,20) (3,30) (5,40) (6,56) ] List after reversing the data: [ (6,56) (5,40) (3,30) (2,20) (1,10) ]
In case you can face any error while compiling the code, you will check the corrections of codes. Despite that, if you see any error, then comment.